The LHCb Experiment

Highlights of physics impact

upgrade plans

Joint Quark and Lepton Session Snowmass-on-the-Mississippi July 31, 2013

> Hassan Jawahery University of Maryland

Outline

> LHCb detector

>Highlights of recent physics results & Their impact

>LHCb Upgrade

The LHCb Detector

A Single Arm Spectrometer at LHC Acceptance: $2 < \eta < 5$

 σ_{inel} ~70-80 mb σ_{cc} ~6 mb (7 TeV) σ_{cc} ~80 μ b (7 TeV) σ_{bb} ~280 μ b (7 TeV) σ_{bb} ~500 μ b (14 TeV)

 $b\overline{b}$ peaked forward or backward with ~25% in detector acceptance

Access to all species of B hadrons

US Participation: Syracuse(since:2005); Cincinnati, Maryland & MIT (since 2012)

Trigger

LO Hardware trigger:

- Require High Pt μ , e, γ or hadron candidates:
- Maximum allowed rate is limited to ~1MHz

High Level Trigger (HLT):

- HLT1: topological trigger & cuts on impact parameter (50 kHz)
- HLT2: Select inclusive or exclusive channels using full track reconstruction.

Operation

- > In the latest run- has been running with $\sim 4 \times 10^{32}$ cm⁻² s⁻¹ with 1262 colliding bunches with 50 ns bunch spacing (since end of 2011)
 - Was designed for peak luminosity 2×10^{32} cm⁻² s⁻¹ for ~2700 colliding bunches with 25 ns spacing.
 - -Average number of visible collisions per crossing is ~1.8
- > Luminosity levelling:
 - Beam separation is adjusted to maintain the luminosity constant.

Luminosity is frequently adjusted (±3% around target value

LHCb Integrated Luminosity

After the Long Shutdown 1 (LS1) will restart in 2015 at 13 TeV, with 25 ns bunch spacing (nominal) Expect to reach a total of ~7/fb by 2018

Detector & Reconstruction Performance (1)

 Detector & reconstruction Performance has been excellentat about the design level in essentially all important aspects.

Detector & Reconstruction performance(2)

B^o mixing as a probe of New Physics

Described by 2x2 mass matrix

$$i\frac{d}{dt}\binom{B}{\bar{B}} = \begin{pmatrix} M_{11} - \Gamma_{11} & M_{12} - \Gamma_{12} \\ M_{21} - \Gamma_{21} & M_{22} - \Gamma_{22} \end{pmatrix} \binom{B}{\bar{B}}$$

$$B_{L} = p \mid B^{0} > + q \mid \bar{B}^{0} >$$

$$B_{H} = p \mid B^{0} > -q \mid \bar{B}^{0} >$$

$$B_L = p \mid B^0 > +q \mid \overline{B}^0 >$$

$$B_H = p \mid B^0 > -q \mid \overline{B}^0 >$$

- ightharpoonup Parameters: ϕ_{12} = arg(- M_{12}/Γ_{12}) $\Delta m = m_H m_L = 2|M_{12}|$ $\Delta \Gamma = \Gamma_H \Gamma_\Lambda = 2|\Gamma_{12}|\cos(\phi_M)$ are highly constrained within SM for the B_d and B_s systems.
- ➤ New Physics contribution can manifest in sizeable CP violations effects & alter these parameters from SM values- in particular in the B_s system.

Key CPV observables in Bos system

φ_{s:} Relative phase of mixing and decay amplitude in CP eigenstates Extract from Time-dependent CPV

$$\phi_s = \phi_m - 2\phi_d$$

$$A_{cp}(t) \simeq \eta_{cp} \sin \phi_s \sin \Delta mt$$

$$\varphi_s^{J/\psi\phi} = -2\arg(\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*}) \approx 0.04(SM)$$

As_{sl:} Semileptonic Asymmetry

$$a_{sl}^{s} = \frac{\Gamma(B_{s}^{0} \to l^{+}v_{l}X) - \Gamma(\overline{B}_{s}^{0} \to l^{-}\overline{v_{l}}X)}{\Gamma(B_{s}^{0} \to l^{+}v_{l}X) - \Gamma(\overline{B}_{s}^{0} \to l^{-}\overline{v_{l}}X)} = \frac{\Delta\Gamma_{s}}{\Delta M_{s}} \tan\phi_{12} = (2.06 \pm 0.57) \times 10^{-5} (SM)$$

Both parameters are small & with well defined SM predictions Thus, highly sensitive probes of NP

ϕ_s results

LHCb: From J/ψφ

$$\phi_s = 0.07 \pm 0.09 \pm 0.01 \text{ (rad)}$$

$$\Gamma$$
=0.663±0.005 ±0.006 (ps⁻¹)
 $\Delta\Gamma$ =0.100 ±0.016±0.003 (ps⁻¹)

Ambiguity removed using interference with K+K-S-wave

$$\phi_s(J/\psi\pi^+\pi^-) = -0.14^{+0.17}_{-0.16} \pm 0.01 \text{ rad}$$

Combining LHCb results:

 Φ_s =0.01±0.07±0.01 rad

Future:

expected accuracy with 7/fb (2018): $\phi_s^{J/\Psi\phi} \sim \pm 0.025$ (rad)

ϕ_s results

LHCb: From J/ψφ

$$\phi_s = 0.07 \pm 0.09 \pm 0.01 \text{ (rad)}$$

$$\Gamma$$
=0.663±0.005 ±0.006 (ps⁻¹)
 $\Delta\Gamma$ =0.100 ±0.016±0.003 (ps⁻¹)

Ambiguity removed using interference with K+K-S-wave

$$\phi_s(J/\psi\pi^+\pi^-) = -0.14^{+0.17}_{-0.16} \pm 0.01 \text{ rad}$$

Combining LHCb results:

 Φ_s =0.01±0.07±0.01 rad

Future:

expected accuracy with 7/fb (2018): $\phi_s^{J/\Psi\phi} \sim \pm 0.025$ (rad)

LHCb measurment of Assl

With $B_s \rightarrow D_s \mu \nu$ (with 1fb-1)

LHCb finds

$$A_{sl}^{s} = (-0.06 \pm 0.50 \pm 0.36)\%$$

In good agreement with SM

$$A_{fs}^d = (-4.1 \pm 0.6) \times 10^{-4}$$

 $A_{fs}^s = (1.9 \pm 0.3) \times 10^{-5}$

B Factories: $a_{sl}^d = (-0.02 \pm 0.31)\%$

Combined D0: $a_{sl}^d = (0.10 \pm 0.30)\%$

Implication for New Physics in Mixing (Utfit analysis)

Fitting the CKM parameters, allowing NP through mixing amplitude (Utfit group)- Model independent approach

$$C_{B_q} e^{2i\varphi_{B_q}} = \frac{\langle B_q \mid H_{eff}^{Full} \mid \overline{B}_q \rangle}{\langle B_q \mid H_{eff}^{SM} \mid \overline{B}_q \rangle}$$

$$SM : C_{B_q} = 1 \qquad \varphi_{B_q} = 0$$

The NP test with B_s system is now as precise as that in B_d ; Both consistent with SM, but still allow plenty of room for NP.

LHCb Measurements of FCNC Processes

b→s processes are highly sensitive to parameters of most NP scenarios & are key to obtaining generic constraints on NP through wilson coefficients.

LHCb measurements of some exclusive channels have already significantly exceeded the sensitivities of previous measurements.

$B_{s/d} \rightarrow \mu^+ \mu^-$

$B^{\circ} \rightarrow K^{\bullet} \mu^{+} \mu^{-}$: Forward-Backward asymmetry

measured: $q_0^2 = 4.9 \pm 0.9 \ GeV^2$

Consistent with SM

Consistent with SM

Evidence for $B_s \rightarrow \mu^+ \mu^-$ A major milestone reached

LHCb 3.0 fb⁻¹

 $4 \sigma \text{ excess} \Rightarrow$

$$\mathcal{Z}(B_s^0 \to \mu^+ \mu^-) = \left(2.9^{+1.1}_{-1.0}(stat)^{+0.3}_{-0.1}(syst)\right) x 10^{-9}$$

$$\mathcal{Z}(B_d^0 \to \mu^+ \mu^-) = \left(3.7^{+2.4}_{-2.1}(stat)^{+0.6}_{-0.4}(syst)\right) x 10^{-10}$$

CMS:
$$\mathcal{E}(B_s^0 \to \mu^+ \mu^-) = (3.0^{+1.1}_{-1.0}) \times 10^{-9}$$

Sensitive to new scalar sectors, extended Higgs.. in MSSM to high tanβ

SM Br (time-integrated) for $B_s \rightarrow \mu^+ \mu^-$ is (3.56±0.3)x10⁻⁹ arXiv 1207.1158]

From S. Hansmann-Menzemer (EPS Plenary talk on Flavor)

Combined LHCb + CMS Result

Observation:

$$BR(B_s \to \mu^+ \mu^-) = (2.9 \pm 0.7) \times 10^{-9}$$

BR(
$$B^0 \to \mu^+ \mu^-$$
) = 3.6 $^{+1.6}_{-1.4} \times 10^{-10}$

LHCb-CONF-2013-012, CMS-PAS-BPH-13-007

Stephanie Hansmann-Menzemer 26

Example of impact on SUSY

Example of impact on SUSY

Impact on Wilson coefficients

Search for LFV in τ decays with LHCb

Sizeable τ cross-section (~80 μ b) mostly from $D_s \rightarrow \tau v$.

Channels: $\tau^+ \rightarrow \mu^+ \mu^- \mu^+$, $p\mu^+ \mu^-$ are searched for via similar strategiestrigger and selection criteria as $B \rightarrow \mu \mu$:

LFV decay $t \rightarrow \mu^- \mu^+ \mu^-$ (1 fb⁻¹)

Normalization channel: $D_s \rightarrow \phi(\mu^-\mu^+)\pi^-$

$$\mathcal{B}(\tau^- \to \mu^- \mu^+ \mu^-) < 8.0 \ (9.8) \times 10^{-8},$$

 $\mathcal{B}(\tau^- \to \bar{p}\mu^+ \mu^-) < 3.3 \ (4.3) \times 10^{-7},$
 $\mathcal{B}(\tau^- \to p\mu^- \mu^-) < 4.4 \ (5.7) \times 10^{-7}.$

Search for majorana n in B decays

Mode	\mathcal{B} upper limit	Approx. limits as function of M_N
$D^{+}\mu^{-}\mu^{-}$	6.9×10^{-7}	_
$D^{*+}\mu^{-}\mu^{-}$	2.4×10^{-6}	
$\pi^+\mu^-\mu^-$	1.3×10^{-8}	$(0.4 - 1.0) \times 10^{-8}$
$D_s^+ \mu^- \mu^- D_s^0 \pi^+ \mu^- \mu^-$	5.8×10^{-7}	$(1.5 - 8.0) \times 10^{-7}$
$D^{\bar{0}}\pi^{+}\mu^{-}\mu^{-}$	1.5×10^{-6}	$(0.3-1.5)\times 10^{-6}$

$$B(\tau^- \to \mu^- \mu^+ \mu^-) < 2.1 \times 10^{-8}$$
 Belle $< 3.3 \times 10^{-8}$ BABAR

Future of LHCb program

LHCb sensitivity to key flavour channels

Type	Observable	Current	LHCb	Upgrade	Theory
		precision	2018	(50fb^{-1})	uncertainty
B_s^0 mixing	$2\beta_s \ (B_s^0 \to J\psi \phi)$	0.10	0.025	0.008	~ 0.003
	$2\beta_s \ (B_s^0 \to J\psi f_0)$	0.17	0.045	0.014	~ 0.01
	$A_{\mathrm{fs}}(B_s^0)$	6.4×10^{-3}	$0.6 imes 10^{-3}$	0.2×10^{-3}	0.03×10^{-3}
Gluonic	$2\beta_s^{\text{eff}}(B_s^0 \to \phi \phi)$	_	0.17	0.03	0.02
penguin	$2\beta_s^{\text{eff}}(B_s^0 \to K^{*0}\bar{K}^{*0})$	_	0.13	0.02	< 0.02
	$2\beta^{\mathrm{eff}}(B^0 \to \phi K_S^0)$		0.30	0.05	0.02
R-handed	$2\beta_s^{\text{eff}}(B_s^0 \to \phi \gamma)$	_	0.09	0.02	< 0.01
currents	$\tau^{\mathrm{eff}}(B_s^0 \to \phi \gamma)/\tau_{B_s^0}$	_	5%	1 %	0.2%
EW	$S_3(B^0 \to K^{*0} \mu^+ \mu^-)$	0.08	0.025	0.008	0.02
penguin	$(1 < q^2 < 6 \text{GeV}^2/c^4)$				
	$s_0(B^0 \to K^{*0} \mu^+ \mu^-)$	25%	6%	2%	7%
Higgs	$\mathcal{B}(B_s^0 \to \mu^+ \mu^-)$	1.5×10^{-9}	0.5×10^{-9}	0.15×10^{-9}	0.3×10^{-9}
penguin	$\mathcal{B}(B^0 \to \mu^+ \mu^-)/$	_	$\sim 100\%$	$\sim 35\%$	$\sim 5\%$
	$\mathcal{B}(B_s^0 \to \mu^+ \mu^-)$				
Unitarity	$\gamma (B \to D^{(*)}K^{(*)})$	$\sim 1012^{\circ}$	4°	0.9°	negligible
triangle	$\gamma \ (B_s^0 \to D_s K)$	_	11°	2.0°	negligible
angles	$\beta \ (B^0 \to J/\psi K_S^0)$	0.8°	0.6°	0.2°	negligible
Charm	A_{Γ}	2.3×10^{-3}	0.40×10^{-3}	0.07×10^{-3}	_
CPV	ΔA_{CP}	2.1×10^{-3}	0.65×10^{-3}	0.12×10^{-3}	_

- Unique potential B_s / b baryon sector
- Charged particle final states far in excess of other facilities

[LHCb-PUB-2012-009]

The LHCb upgrade

- The upgrade is aimed at a data set of 50 fb⁻¹, with the sensitivity to set strong constraints on NP & potential to reveal evidence for it.
 - The LHCb program has unique capability in the ${\rm B^0}_{\rm s}$ sector, as well as the Bc & B-baryons, and extremely high statistical power in key exclusive B decays, and the charm system.
- The upgrade is designed to run at luminosity of $(1-2)\times10^{33}$ cm⁻²s⁻¹.
 - $-Lxt_{LHC-running} \sim 5fb^{-1}/year$
 - All sub-detectors must be compatible with 2×10^{33} cm⁻²s⁻¹.
 - 25 ns LHC bunch spacing needed to limit pile-up (#interactions/crossing)

The LHCb upgrade: Trigger

High Luminosity running requires major change to the LHCb trigger scheme

Saturation of yields with 1MHz L0 limit Must raise P_T cut to stay below 1 MHz

New Apporach:

- ➤ Remove L0 (hardware) trigger
- > Readout the detector at the 40 MHz
- LHC clock rate
- ➤ Move to a fully flexible software trigger

Other major challenges

- > High data rate
- > Increased detector occupancy
- Radiation damage
- > Material budget
- ➤ Event reconstruction Performance with increased pile up

- * Replace all FE electronics & DAQ system for 40 MHz readout
- * Replace all Tracking sub-detectors: VELO, TT, IT & OT
- Upgrade of RICH photo-detectors and optics
- ❖ Calorimeters and Muon system OK at the beginning, but may require upgrade in regions near beam as luminosity rises.

Vertex Locator (VELO) Upgrade

Recent decision on technology:
 Pixel detector with microchannel evaporative Co² cooling

<u>Major challenges:</u>

- Improve IP resolution- move closer to beam & reduce material- reduce occupancy
 - Improved pattern recognition with pixel helps reduce ghost (fake) track rate.
- Must cope with Large differences in track density and radiation level vs distance from beam (370 Mrad near beam)
- High data rate:

Total rate ~ 2-2.5 TBits/s

Single chip: >13 Gbits/s

Move closer to the beam Reuse the existing VELO vacuum system

Working on thinner RF foil-

Currently accounts for

~40% of VELO material

Vertex Locator (VELO) Upgrade

Recent decision on technology:
 Pixel detector with microchannel evaporative Co² cooling

<u>Major challenges:</u>

- Improve IP resolution- move closer to beam & reduce material- reduce occupancy.
 - Improved pattern recognition with pixel helps reduce ghost (fake) track rate.
- Must cope with Large differences in track density and radiation level vs distance from beam
- High data rate:

Total rate ~ 2-2.5 TBits/s

- Single chip: >13 Gbits/s

Move closer to the beam Reuse the existing VELO vacuum system

Upgrade radius: 3.5 mm

Working on thinner RF foil-Currently accounts for ~40% of VELO material

Pixels: 55x55 μm² 41x10⁶ channels

Vertex Locator (VELO) Upgrade

Recent decision on technology:
 Pixel detector with microchannel evaporative Co² cooling

Major challenges:

- Improve IP resolution- move closer to beam & reduce material- reduce occupancy.
 - Improved pattern recognition with pixel helps reduce ghost (fake) track rate.
- Must cope with Large differences indicates indicates in track density and radiation level vs radial distance from beam
- High data rate:
 Total rate ~ 2-2.5 TBits/s
 - Hottest chip: >13 Gbits/s

Move closer to the beam Reuse the existing VELO vacuum system

Upgrade radius: 3.5 mm

Working on thinner RF foil-Currently accounts for ~40% of VELO material

- >Must preserve/improve the current performance in upgrade conditions: increased occupancy & higher pile up rate.
- >Reconstruction speed, efficiency and ghost rate is critical to HLT & flavor tagging

~35 tracks/primary vertex

Current performance

High momentum resolution

High IP resolution

High Track efficiency

Low Ghost rate

- Fast pattern recognition

 $[\sigma(p)/p = 4 \times 10^{-3} \text{ at 5 GeV}/c]$

[20 μ m at hight p_{τ}]

[96% for long tracks]

[~10%]

<u>Upstream Tracker (TT→UT)</u>: (<u>US led effort</u>) •New system:

- 4 planes (x,u & v,x) of single sided (9.8x9.8 cm²) silicon sensors (thickness: 250 μ m vs 500 μ m current TT sensors)
- •Finer segmentation vs TT, optimized to the expected occupancy increase with distance from the beam, improved coverage & reduced material budget
- •FE ASIC directly on Si sensor; digital data processing including zero suppression on the FE ASIC to cope with high data rate.
 - •Considering microchannel evaporative Co² cooling
- UT is an important element of HLT due to its role in reducing ghost rate & fast momentum measurement for trigger using the small B field in UT region; → clean up & speed up event reconstruction

Downstream tracker:

Current system: IT (si) + OT(Straw tube)

Straw tubes occupancy too high in the inner region (>40%) at upgrade luminosity

Three possible upgrade options considered

Technology Options:

Down stream tracker:

Baseline option:

Replace current Si (IT) + Straw tube (OT) system with Scintillating fibers

The viability of SciFiber tracker – from radiation damage-demonstrated

•Fibers: 2.5 m long, 250 µm sci Fibers; mirror on one side

Modules: 5 rows deep12 layers: x & u, v & x

•Read out with SiPM outside the detector acceptance

Challenges: radiation hardness, noise, mechanical

precision

SiPM dark currrent is senstive to neutron fluence (expected $\sim 6x10^{11}$ neq/cm2): Neutron shielding and cold ($\sim -50^{\circ}$ C) operation required to extend lifetime.

RICH upgrade

Current system:

•RICH1: Aerogel & C_4F_{10} gas radiator with HPD

•RICH 2: CF4 gas radiator with HPD

•<u>Upgrade</u>

- •Remove Aerogel (too low p.e yield for upgrade conditions)
- •Replace HPD(FE chip in HPD vacuum) with MaPMT
- •Replace FE electronics for 40 MHz readout.
- •Must reduce occupancy in inner region of RICH1: (expected >30%) New optics (increase radius of curvature of spherical mirror $2.7 \rightarrow 3.8$ m) to spread the Cerenkov rings

RICH upgrade (2)

Current RICH1 (ROC 2.7 m)

Occupancy in hot region 30% → 20%

Upgrade RICH1 (ROC 3.8 m)

P.Campana

The schedule of the LHCb upgrade

```
2013-14 Long Shutd. I / LHCb maintenance, first infrastructures for upgrade
2015-17 LHCb data taking (13-14 TeV) / 40 MHz protos in test
2018-19 Long Shutd. 2 / LHCb upgrade [ Atlas/CMS upgrades phase I]
≥ 2019 Upgraded LHCb in data taking (14 TeV)

• LHCb Upgrade preparation
2013 R&D, technological choices, preparation of subsystems TDRs
2014 Funding/Procurements
2015-19 Construction & installation
```

"Framework TDR for the Upgrade" submitted to LHCC and F. Agencies in June 2012

- → European Strategy doc.: Flavor Physics (LHCb) is part of future exploitation of LHC
- → The Upgrade has been endorsed (for approval) by the LHCC in September 2012
- → CERN Research Board has approved the LHCb upgrade at the end of 2012
- → Upgrade TDRs ready by December 2013 March 2014

Two documents prepared for the European Strategy Group for Particle Physics:

- LHCb collab. The LHCb Upgrade LHCb-PUB-2012-008
- LHCb collab. & 40 theorists Implications of LHCb measurements and future prospects - LHCb-PUB-2012-009 (to be updated by the end of 2013)

Summary

- > LHCb detector & its trigger concept as a powerful flavor experiment has now been successfully demonstrated and operated at LHC:
 - > It operated at 4xdesign luminosity and higher interaction/crossing, with excellent detector performance- at about the design level.
- > The current physics output has already left a major mark on the search for New Physics through rare flavor processes:
 - > Precision tests of NP in B⁰_s mixing: ϕ_s & A^s_{sl} & First evidence for $B^0_s \rightarrow \mu^+\mu^-$
 - > Has significantly constrained the parameter space of many NP scenarios.
- > The LHCb- including the upgrade program- will remain a central element of the overall LHC program for NP search. (A message that has emerged from many studies, including last year's intensity frontier workshop).
 - Planning for LHCb upgrade is progressing well- now in R&D and design stage & funding planning.
- > The US effort has had major impact on the program thus far. The recently strengthened group (4 institutions) also has a major role in upgrade of the tracking system.

44